Open problem

Generalization of extremal animals once again

S.J. Cyvin
Division of Physical Chemistry, The University of Trondheim, N-7034 Trondheim - NTH, Norway

Received 3 May 1993; revised 10 January 1994

I have noted with pleasure the mathematical activity which was triggered by my conjecture on mono- q-polyhexes [1]. It became clear through private communications with E.K. Lloyd that the conjecture is sound for $q \leqslant 6$, but fails for $q>6$. The present note deals with polygonal systems which (for $q \neq 6$) are different from the mono- q-polyhexes.

Consider a system, P_{q}, of simply connected q-gons where any two q-gons either share exactly one edge or are disjointed. Then $q=6$ represents the simply connected polyhexes, for which the Harary-Harborth formula $[2,3]$

$$
\begin{equation*}
\left(n_{i}\right)_{\max }=2 r+1-\left\lceil(12 r-3)^{1 / 2}\right\rceil \tag{1}
\end{equation*}
$$

is sound. Here r and n_{i} denote the number of hexagons (or rings) and the number of internal vertices, respectively. The system P_{q} is by definition extremal when $n_{i}=\left(n_{i}\right)_{\max }$. It is reasonable to assume that, when $q>6$, one extremal P_{q} is generated for every r (number of polygons) during a spiral walk in analogy with the situation for polyhexes $(q=6)$ [2]; see fig. 1. My attempts to find $\left(n_{i}\right)_{\max }$ for P_{q} when $q>6$ gave some surprises.

Fig. 1. Illustration of the spiral walk for polyheptagonal $\left(P_{7}\right)$ systems.

Let me first report briefly a facile derivation which gives a clue to eq. (1). Consider k-fold circumscribed benzene (one hexagon), which is a special extremal P_{6} system, and denote its number of hexagons and number of internal vertices by r_{k} and $\left(n_{i}\right)_{k}$, respectively. It is easily found [4]

$$
\begin{equation*}
r_{k}=3 k^{2}+3 k+1, \quad\left(n_{i}\right)_{k}=6 k^{2} . \tag{2}
\end{equation*}
$$

Herefrom

$$
\begin{equation*}
k=\frac{1}{2} \pm \frac{1}{6}\left(12 r_{k}-3\right)^{1 / 2}, \tag{3}
\end{equation*}
$$

where the minus sign should be applied. On inserting this k into the right-hand side of (2) one obtains

$$
\begin{equation*}
\left(n_{i}\right)_{k}=2 r_{k}+1-\left(12 r_{k}-3\right)^{1 / 2} . \tag{4}
\end{equation*}
$$

This expression is indeed consistent with eq. (1), although (1), of course, does not follow immediately from (4).

When attempting to do something of the same for k-fold circumscribed heptagon (cf. fig. 1) I arrived at

$$
\begin{equation*}
r_{k}=7 F_{2 k}-6, \quad\left(n_{i}\right)_{k}=7\left(2 F_{2 k}-F_{2 k-1}-2\right), \tag{5}
\end{equation*}
$$

in terms of the Fibonacci numbers ($F_{-1}=0, F_{0}=F_{1}=1$, etc.). This is an interesting result, derived previously by Harborth [5], but stops effectively a derivation of an expression for $\left(n_{i}\right)_{\max }$ when $q=7$.

In precise terms, the open problem reads: Find the maximum of internal vertices, $\left(n_{i}\right)_{\max }$, as a function of the number of polygons, r, in simply connected polygonal systems $\left(P_{q}\right)$ consisting of q-gons where $q>6$.

References

[1] S.J. Cyvin, J. Math. Chem. 9 (1992) 389.
[2] F. Harary and H. Harborth, J. Combin. Inf. Sys. Sci. 1 (1976) 1.
[3] I. Gutman, Bull. Soc. Chim. Beograd 47 (1982) 453.
[4] J. Brunvoll and S.J. Cyvin, Z. Naturforsch. (a) 45 (1990) 69.
[5] H. Harborth, Applications of Fibonacci Numbers, Vol. 3, eds. G.E. Bergum, A.N. Phillippou and A.F. Horadam (Kluwer Academic, Dordrecht, 1990) p. 123.

